Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Kidney360 ; 2(3): 494-506, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1776875

RESUMEN

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect any human host, but kidney transplant recipients (KTR) are considered more susceptible on the basis of previous experience with other viral infections. We evaluated rates of hospital complications between SARS-CoV-2-positive KTR and comparator groups. Methods: We extracted data from the electronic health record on patients who were hospitalized with SARS-CoV-2, testing at six hospitals from March 4 through September 9, 2020. We compared outcomes between SARS-CoV-2-positive KTR and controls: SARS-CoV-2-positive non-KTR, SARS-CoV-2-negative KTR, and SARS-CoV-2-negative non-KTR. Results: Of 31,540 inpatients, 3213 tested positive for SARS-CoV-2. There were 32 SARS-CoV-2-positive and 224 SARS-CoV-2-negative KTR. SARS-CoV-2-positive KTR had higher ferritin levels (1412; interquartile range, 748-1749 versus 553; interquartile range, 256-1035; P<0.01) compared with SARS-CoV-2-positive non-KTR. SARS-CoV-2-positive KTR had higher rates of ventilation (34% versus 14%, P<0.01; versus 9%, P<0.01; versus 5%, P<0.01), vasopressor use (41% versus 16%, P<0.01; versus 17%, P<0.01; versus 12%, P<0.01), and AKI (47% versus 15%, P<0.01; versus 23%, P<0.01; versus 10%, P<0.01) compared with SARS-CoV-2-positive non-KTR, SARS-CoV-2-negative KTR, and SARS-CoV-2-negative non-KTR, respectively. SARS-CoV-2-positive KTR continued to have increased odds of ventilation, vasopressor use, and AKI compared with SARS-CoV-2-positive non-KTR independent of Elixhauser score, Black race, and baseline eGFR. Mortality was not significantly different between SARS-CoV-2-positive KTR and non-KTR, but there was a notable trend toward higher mortality in SARS-CoV-2-positive KTR (25% versus 16%, P=0.15, respectively). Conclusions: Hospitalized SARS-CoV-2-positive KTR had a high rate of mortality and hospital complications, such as requiring ventilation, vasopressor use, and AKI. Additionally, they had higher odds of hospital complications compared with SARS-CoV-2-positive non-KTR after adjusting for Elixhauser score, Black race, and baseline eGFR. Future studies with larger sample size of KTR are needed to validate our findings. Podcast: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/K360/2021_03_25_KID0005652020.mp3.


Asunto(s)
COVID-19 , Trasplante de Riñón , COVID-19/epidemiología , Hospitalización , Humanos , Trasplante de Riñón/efectos adversos , SARS-CoV-2 , Receptores de Trasplantes
2.
PLoS One ; 16(5): e0251376, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1225812

RESUMEN

IMPORTANCE: False negative SARS-CoV-2 tests can lead to spread of infection in the inpatient setting to other patients and healthcare workers. However, the population of patients with COVID who are admitted with false negative testing is unstudied. OBJECTIVE: To characterize and develop a model to predict true SARS-CoV-2 infection among patients who initially test negative for COVID by PCR. DESIGN: Retrospective cohort study. SETTING: Five hospitals within the Yale New Haven Health System between 3/10/2020 and 9/1/2020. PARTICIPANTS: Adult patients who received diagnostic testing for SARS-CoV-2 virus within the first 96 hours of hospitalization. EXPOSURE: We developed a logistic regression model from readily available electronic health record data to predict SARS-CoV-2 positivity in patients who were positive for COVID and those who were negative and never retested. MAIN OUTCOMES AND MEASURES: This model was applied to patients testing negative for SARS-CoV-2 who were retested within the first 96 hours of hospitalization. We evaluated the ability of the model to discriminate between patients who would subsequently retest negative and those who would subsequently retest positive. RESULTS: We included 31,459 hospitalized adult patients; 2,666 of these patients tested positive for COVID and 3,511 initially tested negative for COVID and were retested. Of the patients who were retested, 61 (1.7%) had a subsequent positive COVID test. The model showed that higher age, vital sign abnormalities, and lower white blood cell count served as strong predictors for COVID positivity in these patients. The model had moderate performance to predict which patients would retest positive with a test set area under the receiver-operator characteristic (ROC) of 0.76 (95% CI 0.70-0.83). Using a cutpoint for our risk prediction model at the 90th percentile for probability, we were able to capture 35/61 (57%) of the patients who would retest positive. This cutpoint amounts to a number-needed-to-retest range between 15 and 77 patients. CONCLUSION AND RELEVANCE: We show that a pragmatic model can predict which patients should be retested for COVID. Further research is required to determine if this risk model can be applied prospectively in hospitalized patients to prevent the spread of SARS-CoV-2 infections.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Predicción/métodos , Anciano , Estudios de Cohortes , Reacciones Falso Negativas , Femenino , Personal de Salud , Hospitalización , Hospitales , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Estudios Retrospectivos , SARS-CoV-2/patogenicidad
3.
Am J Kidney Dis ; 77(4): 490-499.e1, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1012701

RESUMEN

RATIONALE & OBJECTIVE: Although coronavirus disease 2019 (COVID-19) has been associated with acute kidney injury (AKI), it is unclear whether this association is independent of traditional risk factors such as hypotension, nephrotoxin exposure, and inflammation. We tested the independent association of COVID-19 with AKI. STUDY DESIGN: Multicenter, observational, cohort study. SETTING & PARTICIPANTS: Patients admitted to 1 of 6 hospitals within the Yale New Haven Health System between March 10, 2020, and August 31, 2020, with results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing via polymerase chain reaction of a nasopharyngeal sample. EXPOSURE: Positive test for SARS-CoV-2. OUTCOME: AKI by KDIGO (Kidney Disease: Improving Global Outcomes) criteria. ANALYTICAL APPROACH: Evaluated the association of COVID-19 with AKI after controlling for time-invariant factors at admission (eg, demographic characteristics, comorbidities) and time-varying factors updated continuously during hospitalization (eg, vital signs, medications, laboratory results, respiratory failure) using time-updated Cox proportional hazard models. RESULTS: Of the 22,122 patients hospitalized, 2,600 tested positive and 19,522 tested negative for SARS-CoV-2. Compared with patients who tested negative, patients with COVID-19 had more AKI (30.6% vs 18.2%; absolute risk difference, 12.5% [95% CI, 10.6%-14.3%]) and dialysis-requiring AKI (8.5% vs 3.6%) and lower rates of recovery from AKI (58% vs 69.8%). Compared with patients without COVID-19, patients with COVID-19 had higher inflammatory marker levels (C-reactive protein, ferritin) and greater use of vasopressors and diuretic agents. Compared with patients without COVID-19, patients with COVID-19 had a higher rate of AKI in univariable analysis (hazard ratio, 1.84 [95% CI, 1.73-1.95]). In a fully adjusted model controlling for demographic variables, comorbidities, vital signs, medications, and laboratory results, COVID-19 remained associated with a high rate of AKI (adjusted hazard ratio, 1.40 [95% CI, 1.29-1.53]). LIMITATIONS: Possibility of residual confounding. CONCLUSIONS: COVID-19 is associated with high rates of AKI not fully explained by adjustment for known risk factors. This suggests the presence of mechanisms of AKI not accounted for in this analysis, which may include a direct effect of COVID-19 on the kidney or other unmeasured mediators. Future studies should evaluate the possible unique pathways by which COVID-19 may cause AKI.


Asunto(s)
Lesión Renal Aguda/epidemiología , COVID-19/epidemiología , Lesión Renal Aguda/sangre , Lesión Renal Aguda/terapia , Anciano , Proteína C-Reactiva/metabolismo , COVID-19/metabolismo , COVID-19/terapia , Estudios de Cohortes , Creatinina/sangre , Diuréticos/uso terapéutico , Femenino , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Tiempo de Internación , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Diálisis Renal , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/epidemiología , Respiración Artificial , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Estados Unidos/epidemiología , Vasoconstrictores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA